TMB Analysis
calculate_tmb_analysis¶
Short description¶
Calculate Tumor Mutation Burden (TMB) analysis for each sample in a PyMutation object.
Signature¶
def calculate_tmb_analysis(self, variant_classification_column: Optional[str] = None, genome_size_bp: int = 60456963, output_dir: str = ".", save_files: bool = True) -> Dict[str, pd.DataFrame]:
Parameters¶
Parameter | Type | Required | Description |
---|---|---|---|
variant_classification_column |
Optional[str] |
No | Name of the column containing variant classification information. If None, will automatically detect variant classification columns. |
genome_size_bp |
int |
No | Size of the interrogated region in base pairs for TMB normalization. Default 60,456,963 bp (WES standard). Use ~3,000,000,000 bp for WGS. |
output_dir |
str |
No | Directory where output files will be saved. Default is current directory. |
save_files |
bool |
No | Whether to save the results to TSV files. Default is True. |
Return value¶
Returns a dictionary with two DataFrames: {'analysis': pd.DataFrame, 'statistics': pd.DataFrame}
. The 'analysis' DataFrame contains per-sample TMB metrics, and the 'statistics' DataFrame contains global TMB statistics (mean, median, quartiles, etc.).
Exceptions¶
ValueError
: if PyMutation object is invalid (missing 'data' or 'samples' attributes).ValueError
: if PyMutation data is empty.ValueError
: if no samples found in PyMutation object.ValueError
: if missing required columns (REF, ALT) in PyMutation data.ValueError
: if provided variant classification column is not found in data.